'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a(d(x1)) -> d(b(x1))
     , a(x1) -> b(b(b(x1)))
     , d(x1) -> x1
     , a(x1) -> x1
     , b(d(b(x1))) -> a(d(x1))
     , b(c(x1)) -> c(d(d(x1)))
     , a(c(x1)) -> b(b(c(d(x1))))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a^#(d(x1)) -> c_0(d^#(b(x1)))
    , a^#(x1) -> c_1(b^#(b(b(x1))))
    , d^#(x1) -> c_2()
    , a^#(x1) -> c_3()
    , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
    , b^#(c(x1)) -> c_5(d^#(d(x1)))
    , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
  
  The usable rules are:
   {  d(x1) -> x1
    , b(d(b(x1))) -> a(d(x1))
    , b(c(x1)) -> c(d(d(x1)))
    , a(d(x1)) -> d(b(x1))
    , a(x1) -> b(b(b(x1)))
    , a(x1) -> x1
    , a(c(x1)) -> b(b(c(d(x1))))}
  
  The estimated dependency graph contains the following edges:
   {a^#(d(x1)) -> c_0(d^#(b(x1)))}
     ==> {d^#(x1) -> c_2()}
   {a^#(x1) -> c_1(b^#(b(b(x1))))}
     ==> {b^#(c(x1)) -> c_5(d^#(d(x1)))}
   {a^#(x1) -> c_1(b^#(b(b(x1))))}
     ==> {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
   {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
     ==> {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
   {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
     ==> {a^#(x1) -> c_3()}
   {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
     ==> {a^#(x1) -> c_1(b^#(b(b(x1))))}
   {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
     ==> {a^#(d(x1)) -> c_0(d^#(b(x1)))}
   {b^#(c(x1)) -> c_5(d^#(d(x1)))}
     ==> {d^#(x1) -> c_2()}
   {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
     ==> {b^#(c(x1)) -> c_5(d^#(d(x1)))}
   {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
     ==> {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
  
  We consider the following path(s):
   1) {  a^#(x1) -> c_1(b^#(b(b(x1))))
       , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
       , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
       , a^#(d(x1)) -> c_0(d^#(b(x1)))
       , d^#(x1) -> c_2()}
      
      The usable rules for this path are the following:
      {  d(x1) -> x1
       , b(d(b(x1))) -> a(d(x1))
       , b(c(x1)) -> c(d(d(x1)))
       , a(d(x1)) -> d(b(x1))
       , a(x1) -> b(b(b(x1)))
       , a(x1) -> x1
       , a(c(x1)) -> b(b(c(d(x1))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(x1) -> x1
               , b(d(b(x1))) -> a(d(x1))
               , b(c(x1)) -> c(d(d(x1)))
               , a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))
               , a^#(d(x1)) -> c_0(d^#(b(x1)))
               , a^#(x1) -> c_1(b^#(b(b(x1))))
               , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
               , d^#(x1) -> c_2()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
            and weakly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(x1) -> c_1(b^#(b(b(x1))))}
            and weakly orienting the rules
            {  a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(x1) -> c_1(b^#(b(b(x1))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d^#(x1) -> c_2()}
            and weakly orienting the rules
            {  a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d^#(x1) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [3]
                  d^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [7]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(d(x1)) -> c_0(d^#(b(x1)))}
            and weakly orienting the rules
            {  d^#(x1) -> c_2()
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(d(x1)) -> c_0(d^#(b(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(x1) -> x1}
            and weakly orienting the rules
            {  a^#(d(x1)) -> c_0(d^#(b(x1)))
             , d^#(x1) -> c_2()
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [7]
                  d(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [2]
                  c(x1) = [1] x1 + [4]
                  a^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [4]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> c(d(d(x1)))}
            and weakly orienting the rules
            {  d(x1) -> x1
             , a^#(d(x1)) -> c_0(d^#(b(x1)))
             , d^#(x1) -> c_2()
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> c(d(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [6]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [2]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [1] x1 + [7]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [4]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [2]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  b(d(b(x1))) -> a(d(x1))
                 , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
              Weak Rules:
                {  b(c(x1)) -> c(d(d(x1)))
                 , d(x1) -> x1
                 , a^#(d(x1)) -> c_0(d^#(b(x1)))
                 , d^#(x1) -> c_2()
                 , a^#(x1) -> c_1(b^#(b(b(x1))))
                 , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                 , a(d(x1)) -> d(b(x1))
                 , a(x1) -> b(b(b(x1)))
                 , a(x1) -> x1
                 , a(c(x1)) -> b(b(c(d(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  b(d(b(x1))) -> a(d(x1))
                   , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
                Weak Rules:
                  {  b(c(x1)) -> c(d(d(x1)))
                   , d(x1) -> x1
                   , a^#(d(x1)) -> c_0(d^#(b(x1)))
                   , d^#(x1) -> c_2()
                   , a^#(x1) -> c_1(b^#(b(b(x1))))
                   , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                   , a(d(x1)) -> d(b(x1))
                   , a(x1) -> b(b(b(x1)))
                   , a(x1) -> x1
                   , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  d_0(4) -> 16
                 , d_0(4) -> 17
                 , d_0(4) -> 18
                 , d_0(4) -> 19
                 , d_0(16) -> 17
                 , d_0(16) -> 18
                 , d_0(16) -> 19
                 , d_0(17) -> 18
                 , d_0(17) -> 19
                 , d_0(18) -> 19
                 , b_0(4) -> 12
                 , b_0(12) -> 11
                 , b_0(15) -> 14
                 , c_0(4) -> 4
                 , c_0(4) -> 16
                 , c_0(4) -> 17
                 , c_0(4) -> 18
                 , c_0(4) -> 19
                 , c_0(16) -> 15
                 , c_0(17) -> 12
                 , c_0(18) -> 14
                 , c_0(19) -> 11
                 , a^#_0(4) -> 5
                 , d^#_0(4) -> 7
                 , c_1_0(10) -> 5
                 , b^#_0(4) -> 9
                 , b^#_0(11) -> 10
                 , b^#_0(14) -> 13
                 , c_2_0() -> 7
                 , c_6_0(13) -> 5}
      
   2) {  a^#(x1) -> c_1(b^#(b(b(x1))))
       , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
       , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
       , b^#(c(x1)) -> c_5(d^#(d(x1)))
       , d^#(x1) -> c_2()}
      
      The usable rules for this path are the following:
      {  d(x1) -> x1
       , b(d(b(x1))) -> a(d(x1))
       , b(c(x1)) -> c(d(d(x1)))
       , a(d(x1)) -> d(b(x1))
       , a(x1) -> b(b(b(x1)))
       , a(x1) -> x1
       , a(c(x1)) -> b(b(c(d(x1))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(x1) -> x1
               , b(d(b(x1))) -> a(d(x1))
               , b(c(x1)) -> c(d(d(x1)))
               , a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))
               , b^#(c(x1)) -> c_5(d^#(d(x1)))
               , a^#(x1) -> c_1(b^#(b(b(x1))))
               , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
               , d^#(x1) -> c_2()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
            and weakly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(c(x1)) -> c_5(d^#(d(x1)))}
            and weakly orienting the rules
            {  b^#(d(b(x1))) -> c_4(a^#(d(x1)))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(c(x1)) -> c_5(d^#(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d^#(x1) -> c_2()}
            and weakly orienting the rules
            {  b^#(c(x1)) -> c_5(d^#(d(x1)))
             , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d^#(x1) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [8]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(x1) -> x1}
            and weakly orienting the rules
            {  d^#(x1) -> c_2()
             , b^#(c(x1)) -> c_5(d^#(d(x1)))
             , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [12]
                  d(x1) = [1] x1 + [12]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [11]
                  a^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [9]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> c(d(d(x1)))}
            and weakly orienting the rules
            {  d(x1) -> x1
             , d^#(x1) -> c_2()
             , b^#(c(x1)) -> c_5(d^#(d(x1)))
             , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> c(d(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [3]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [1]
                  a^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [3]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [8]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  b(d(b(x1))) -> a(d(x1))
                 , a^#(x1) -> c_1(b^#(b(b(x1))))
                 , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
              Weak Rules:
                {  b(c(x1)) -> c(d(d(x1)))
                 , d(x1) -> x1
                 , d^#(x1) -> c_2()
                 , b^#(c(x1)) -> c_5(d^#(d(x1)))
                 , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
                 , a(d(x1)) -> d(b(x1))
                 , a(x1) -> b(b(b(x1)))
                 , a(x1) -> x1
                 , a(c(x1)) -> b(b(c(d(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  b(d(b(x1))) -> a(d(x1))
                   , a^#(x1) -> c_1(b^#(b(b(x1))))
                   , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
                Weak Rules:
                  {  b(c(x1)) -> c(d(d(x1)))
                   , d(x1) -> x1
                   , d^#(x1) -> c_2()
                   , b^#(c(x1)) -> c_5(d^#(d(x1)))
                   , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
                   , a(d(x1)) -> d(b(x1))
                   , a(x1) -> b(b(b(x1)))
                   , a(x1) -> x1
                   , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  d_0(4) -> 11
                 , d_1(4) -> 18
                 , d_1(4) -> 19
                 , d_1(4) -> 20
                 , d_1(4) -> 23
                 , d_1(4) -> 25
                 , d_1(18) -> 19
                 , d_1(18) -> 20
                 , d_1(18) -> 23
                 , d_1(18) -> 25
                 , d_1(19) -> 20
                 , d_1(19) -> 23
                 , d_1(19) -> 25
                 , d_1(20) -> 23
                 , d_1(20) -> 25
                 , d_1(23) -> 25
                 , b_1(4) -> 14
                 , b_1(14) -> 13
                 , b_1(17) -> 16
                 , c_0(4) -> 4
                 , c_0(4) -> 11
                 , c_0(4) -> 18
                 , c_0(4) -> 19
                 , c_0(4) -> 20
                 , c_0(4) -> 23
                 , c_0(4) -> 25
                 , c_1(18) -> 17
                 , c_1(19) -> 14
                 , c_1(20) -> 16
                 , c_1(23) -> 13
                 , a^#_0(4) -> 5
                 , d^#_0(4) -> 7
                 , d^#_0(11) -> 10
                 , d^#_1(20) -> 21
                 , d^#_1(23) -> 22
                 , d^#_1(25) -> 24
                 , c_1_1(12) -> 5
                 , b^#_0(4) -> 9
                 , b^#_1(13) -> 12
                 , b^#_1(16) -> 15
                 , c_2_0() -> 7
                 , c_2_0() -> 10
                 , c_2_1() -> 21
                 , c_2_1() -> 22
                 , c_2_1() -> 24
                 , c_5_0(10) -> 9
                 , c_5_1(21) -> 9
                 , c_5_1(22) -> 15
                 , c_5_1(24) -> 12
                 , c_6_1(15) -> 5}
      
   3) {  a^#(x1) -> c_1(b^#(b(b(x1))))
       , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
       , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
       , b^#(c(x1)) -> c_5(d^#(d(x1)))}
      
      The usable rules for this path are the following:
      {  d(x1) -> x1
       , b(d(b(x1))) -> a(d(x1))
       , b(c(x1)) -> c(d(d(x1)))
       , a(d(x1)) -> d(b(x1))
       , a(x1) -> b(b(b(x1)))
       , a(x1) -> x1
       , a(c(x1)) -> b(b(c(d(x1))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(x1) -> x1
               , b(d(b(x1))) -> a(d(x1))
               , b(c(x1)) -> c(d(d(x1)))
               , a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))
               , a^#(x1) -> c_1(b^#(b(b(x1))))
               , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
               , b^#(c(x1)) -> c_5(d^#(d(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
            and weakly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a^#(x1) -> c_1(b^#(b(b(x1))))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [4]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [7]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b^#(c(x1)) -> c_5(d^#(d(x1)))}
            and weakly orienting the rules
            {  a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b^#(c(x1)) -> c_5(d^#(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [7]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(x1) -> x1}
            and weakly orienting the rules
            {  b^#(c(x1)) -> c_5(d^#(d(x1)))
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [8]
                  d(x1) = [1] x1 + [4]
                  b(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> c(d(d(x1)))}
            and weakly orienting the rules
            {  d(x1) -> x1
             , b^#(c(x1)) -> c_5(d^#(d(x1)))
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> c(d(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [10]
                  d(x1) = [1] x1 + [1]
                  b(x1) = [1] x1 + [3]
                  c(x1) = [1] x1 + [13]
                  a^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [3]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [4]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  b(d(b(x1))) -> a(d(x1))
                 , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
              Weak Rules:
                {  b(c(x1)) -> c(d(d(x1)))
                 , d(x1) -> x1
                 , b^#(c(x1)) -> c_5(d^#(d(x1)))
                 , a^#(x1) -> c_1(b^#(b(b(x1))))
                 , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                 , a(d(x1)) -> d(b(x1))
                 , a(x1) -> b(b(b(x1)))
                 , a(x1) -> x1
                 , a(c(x1)) -> b(b(c(d(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  b(d(b(x1))) -> a(d(x1))
                   , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
                Weak Rules:
                  {  b(c(x1)) -> c(d(d(x1)))
                   , d(x1) -> x1
                   , b^#(c(x1)) -> c_5(d^#(d(x1)))
                   , a^#(x1) -> c_1(b^#(b(b(x1))))
                   , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                   , a(d(x1)) -> d(b(x1))
                   , a(x1) -> b(b(b(x1)))
                   , a(x1) -> x1
                   , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  d_0(4) -> 11
                 , d_0(4) -> 18
                 , d_0(4) -> 19
                 , d_0(4) -> 21
                 , d_0(4) -> 23
                 , d_0(11) -> 18
                 , d_0(11) -> 19
                 , d_0(11) -> 21
                 , d_0(11) -> 23
                 , d_0(18) -> 19
                 , d_0(18) -> 21
                 , d_0(18) -> 23
                 , d_0(19) -> 21
                 , d_0(19) -> 23
                 , d_0(21) -> 23
                 , b_0(4) -> 14
                 , b_0(14) -> 13
                 , b_0(17) -> 16
                 , c_0(4) -> 4
                 , c_0(4) -> 11
                 , c_0(4) -> 18
                 , c_0(4) -> 19
                 , c_0(4) -> 21
                 , c_0(4) -> 23
                 , c_0(11) -> 17
                 , c_0(18) -> 14
                 , c_0(19) -> 16
                 , c_0(21) -> 13
                 , a^#_0(4) -> 5
                 , d^#_0(4) -> 7
                 , d^#_0(11) -> 10
                 , d^#_0(21) -> 20
                 , d^#_0(23) -> 22
                 , c_1_0(12) -> 5
                 , b^#_0(4) -> 9
                 , b^#_0(13) -> 12
                 , b^#_0(16) -> 15
                 , c_5_0(10) -> 9
                 , c_5_0(20) -> 15
                 , c_5_0(22) -> 12
                 , c_6_0(15) -> 5}
      
   4) {  a^#(x1) -> c_1(b^#(b(b(x1))))
       , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
       , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
       , a^#(d(x1)) -> c_0(d^#(b(x1)))}
      
      The usable rules for this path are the following:
      {  d(x1) -> x1
       , b(d(b(x1))) -> a(d(x1))
       , b(c(x1)) -> c(d(d(x1)))
       , a(d(x1)) -> d(b(x1))
       , a(x1) -> b(b(b(x1)))
       , a(x1) -> x1
       , a(c(x1)) -> b(b(c(d(x1))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(x1) -> x1
               , b(d(b(x1))) -> a(d(x1))
               , b(c(x1)) -> c(d(d(x1)))
               , a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))
               , a^#(x1) -> c_1(b^#(b(b(x1))))
               , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
               , a^#(d(x1)) -> c_0(d^#(b(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
            and weakly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a^#(x1) -> c_1(b^#(b(b(x1))))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [7]
                  d^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a^#(d(x1)) -> c_0(d^#(b(x1)))}
            and weakly orienting the rules
            {  a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a^#(d(x1)) -> c_0(d^#(b(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [7]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> c(d(d(x1)))}
            and weakly orienting the rules
            {  a^#(d(x1)) -> c_0(d^#(b(x1)))
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> c(d(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [13]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [4]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [2]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [4]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(x1) -> x1}
            and weakly orienting the rules
            {  b(c(x1)) -> c(d(d(x1)))
             , a^#(d(x1)) -> c_0(d^#(b(x1)))
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [13]
                  d(x1) = [1] x1 + [2]
                  b(x1) = [1] x1 + [4]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [14]
                  c_0(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [2]
                  b^#(x1) = [1] x1 + [2]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  b(d(b(x1))) -> a(d(x1))
                 , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
              Weak Rules:
                {  d(x1) -> x1
                 , b(c(x1)) -> c(d(d(x1)))
                 , a^#(d(x1)) -> c_0(d^#(b(x1)))
                 , a^#(x1) -> c_1(b^#(b(b(x1))))
                 , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                 , a(d(x1)) -> d(b(x1))
                 , a(x1) -> b(b(b(x1)))
                 , a(x1) -> x1
                 , a(c(x1)) -> b(b(c(d(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  b(d(b(x1))) -> a(d(x1))
                   , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
                Weak Rules:
                  {  d(x1) -> x1
                   , b(c(x1)) -> c(d(d(x1)))
                   , a^#(d(x1)) -> c_0(d^#(b(x1)))
                   , a^#(x1) -> c_1(b^#(b(b(x1))))
                   , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                   , a(d(x1)) -> d(b(x1))
                   , a(x1) -> b(b(b(x1)))
                   , a(x1) -> x1
                   , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  d_0(4) -> 16
                 , d_0(4) -> 17
                 , d_0(4) -> 18
                 , d_0(4) -> 19
                 , d_0(16) -> 17
                 , d_0(16) -> 18
                 , d_0(16) -> 19
                 , d_0(17) -> 18
                 , d_0(17) -> 19
                 , d_0(18) -> 19
                 , b_0(4) -> 12
                 , b_0(12) -> 11
                 , b_0(15) -> 14
                 , c_0(4) -> 4
                 , c_0(4) -> 16
                 , c_0(4) -> 17
                 , c_0(4) -> 18
                 , c_0(4) -> 19
                 , c_0(16) -> 15
                 , c_0(17) -> 12
                 , c_0(18) -> 14
                 , c_0(19) -> 11
                 , a^#_0(4) -> 5
                 , d^#_0(4) -> 7
                 , c_1_0(10) -> 5
                 , b^#_0(4) -> 9
                 , b^#_0(11) -> 10
                 , b^#_0(14) -> 13
                 , c_6_0(13) -> 5}
      
   5) {  a^#(x1) -> c_1(b^#(b(b(x1))))
       , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
       , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
      
      The usable rules for this path are the following:
      {  d(x1) -> x1
       , b(d(b(x1))) -> a(d(x1))
       , b(c(x1)) -> c(d(d(x1)))
       , a(d(x1)) -> d(b(x1))
       , a(x1) -> b(b(b(x1)))
       , a(x1) -> x1
       , a(c(x1)) -> b(b(c(d(x1))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(x1) -> x1
               , b(d(b(x1))) -> a(d(x1))
               , b(c(x1)) -> c(d(d(x1)))
               , a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))
               , a^#(x1) -> c_1(b^#(b(b(x1))))
               , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
            and weakly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a^#(x1) -> c_1(b^#(b(b(x1))))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(x1) -> x1}
            and weakly orienting the rules
            {  a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [11]
                  d(x1) = [1] x1 + [8]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [8]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> c(d(d(x1)))}
            and weakly orienting the rules
            {  d(x1) -> x1
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> c(d(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [12]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [4]
                  c(x1) = [1] x1 + [4]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  b(d(b(x1))) -> a(d(x1))
                 , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
              Weak Rules:
                {  b(c(x1)) -> c(d(d(x1)))
                 , d(x1) -> x1
                 , a^#(x1) -> c_1(b^#(b(b(x1))))
                 , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                 , a(d(x1)) -> d(b(x1))
                 , a(x1) -> b(b(b(x1)))
                 , a(x1) -> x1
                 , a(c(x1)) -> b(b(c(d(x1))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  b(d(b(x1))) -> a(d(x1))
                   , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
                Weak Rules:
                  {  b(c(x1)) -> c(d(d(x1)))
                   , d(x1) -> x1
                   , a^#(x1) -> c_1(b^#(b(b(x1))))
                   , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                   , a(d(x1)) -> d(b(x1))
                   , a(x1) -> b(b(b(x1)))
                   , a(x1) -> x1
                   , a(c(x1)) -> b(b(c(d(x1))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  d_0(4) -> 16
                 , d_0(4) -> 17
                 , d_0(4) -> 18
                 , d_0(4) -> 19
                 , d_0(16) -> 17
                 , d_0(16) -> 18
                 , d_0(16) -> 19
                 , d_0(17) -> 18
                 , d_0(17) -> 19
                 , d_0(18) -> 19
                 , b_0(4) -> 12
                 , b_0(12) -> 11
                 , b_0(15) -> 14
                 , c_0(4) -> 4
                 , c_0(4) -> 16
                 , c_0(4) -> 17
                 , c_0(4) -> 18
                 , c_0(4) -> 19
                 , c_0(16) -> 15
                 , c_0(17) -> 12
                 , c_0(18) -> 14
                 , c_0(19) -> 11
                 , a^#_0(4) -> 5
                 , c_1_0(10) -> 5
                 , b^#_0(4) -> 9
                 , b^#_0(11) -> 10
                 , b^#_0(14) -> 13
                 , c_6_0(13) -> 5}
      
   6) {  a^#(x1) -> c_1(b^#(b(b(x1))))
       , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
       , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
       , a^#(x1) -> c_3()}
      
      The usable rules for this path are the following:
      {  d(x1) -> x1
       , b(d(b(x1))) -> a(d(x1))
       , b(c(x1)) -> c(d(d(x1)))
       , a(d(x1)) -> d(b(x1))
       , a(x1) -> b(b(b(x1)))
       , a(x1) -> x1
       , a(c(x1)) -> b(b(c(d(x1))))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(x1) -> x1
               , b(d(b(x1))) -> a(d(x1))
               , b(c(x1)) -> c(d(d(x1)))
               , a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))
               , a^#(x1) -> c_1(b^#(b(b(x1))))
               , b^#(d(b(x1))) -> c_4(a^#(d(x1)))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
               , a^#(x1) -> c_3()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a^#(x1) -> c_3()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a(d(x1)) -> d(b(x1))
               , a(x1) -> b(b(b(x1)))
               , a(x1) -> x1
               , a(c(x1)) -> b(b(c(d(x1))))
               , a^#(x1) -> c_1(b^#(b(b(x1))))
               , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
               , a^#(x1) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [1]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [9]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d(x1) -> x1}
            and weakly orienting the rules
            {  a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a^#(x1) -> c_3()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d(x1) -> x1}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [15]
                  d(x1) = [1] x1 + [3]
                  b(x1) = [1] x1 + [5]
                  c(x1) = [1] x1 + [0]
                  a^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  b^#(x1) = [1] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {b(c(x1)) -> c(d(d(x1)))}
            and weakly orienting the rules
            {  d(x1) -> x1
             , a(d(x1)) -> d(b(x1))
             , a(x1) -> b(b(b(x1)))
             , a(x1) -> x1
             , a(c(x1)) -> b(b(c(d(x1))))
             , a^#(x1) -> c_1(b^#(b(b(x1))))
             , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
             , a^#(x1) -> c_3()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {b(c(x1)) -> c(d(d(x1)))}
              
              Details:
                 Interpretation Functions:
                  a(x1) = [1] x1 + [6]
                  d(x1) = [1] x1 + [0]
                  b(x1) = [1] x1 + [2]
                  c(x1) = [1] x1 + [7]
                  a^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  b^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  c_4(x1) = [1] x1 + [12]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  b(d(b(x1))) -> a(d(x1))
                 , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
              Weak Rules:
                {  b(c(x1)) -> c(d(d(x1)))
                 , d(x1) -> x1
                 , a(d(x1)) -> d(b(x1))
                 , a(x1) -> b(b(b(x1)))
                 , a(x1) -> x1
                 , a(c(x1)) -> b(b(c(d(x1))))
                 , a^#(x1) -> c_1(b^#(b(b(x1))))
                 , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                 , a^#(x1) -> c_3()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  b(d(b(x1))) -> a(d(x1))
                   , b^#(d(b(x1))) -> c_4(a^#(d(x1)))}
                Weak Rules:
                  {  b(c(x1)) -> c(d(d(x1)))
                   , d(x1) -> x1
                   , a(d(x1)) -> d(b(x1))
                   , a(x1) -> b(b(b(x1)))
                   , a(x1) -> x1
                   , a(c(x1)) -> b(b(c(d(x1))))
                   , a^#(x1) -> c_1(b^#(b(b(x1))))
                   , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))
                   , a^#(x1) -> c_3()}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  d_0(4) -> 16
                 , d_0(4) -> 17
                 , d_0(4) -> 18
                 , d_0(4) -> 19
                 , d_0(16) -> 17
                 , d_0(16) -> 18
                 , d_0(16) -> 19
                 , d_0(17) -> 18
                 , d_0(17) -> 19
                 , d_0(18) -> 19
                 , b_0(4) -> 12
                 , b_0(12) -> 11
                 , b_0(15) -> 14
                 , c_0(4) -> 4
                 , c_0(4) -> 16
                 , c_0(4) -> 17
                 , c_0(4) -> 18
                 , c_0(4) -> 19
                 , c_0(16) -> 15
                 , c_0(17) -> 12
                 , c_0(18) -> 14
                 , c_0(19) -> 11
                 , a^#_0(4) -> 5
                 , c_1_0(10) -> 5
                 , b^#_0(4) -> 9
                 , b^#_0(11) -> 10
                 , b^#_0(14) -> 13
                 , c_3_0() -> 5
                 , c_6_0(13) -> 5}