'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , d(x1) -> x1 , a(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(c(x1)) -> b(b(c(d(x1))))} Details: We have computed the following set of weak (innermost) dependency pairs: { a^#(d(x1)) -> c_0(d^#(b(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , d^#(x1) -> c_2() , a^#(x1) -> c_3() , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , b^#(c(x1)) -> c_5(d^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} The usable rules are: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} The estimated dependency graph contains the following edges: {a^#(d(x1)) -> c_0(d^#(b(x1)))} ==> {d^#(x1) -> c_2()} {a^#(x1) -> c_1(b^#(b(b(x1))))} ==> {b^#(c(x1)) -> c_5(d^#(d(x1)))} {a^#(x1) -> c_1(b^#(b(b(x1))))} ==> {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} ==> {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} ==> {a^#(x1) -> c_3()} {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} ==> {a^#(x1) -> c_1(b^#(b(b(x1))))} {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} ==> {a^#(d(x1)) -> c_0(d^#(b(x1)))} {b^#(c(x1)) -> c_5(d^#(d(x1)))} ==> {d^#(x1) -> c_2()} {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} ==> {b^#(c(x1)) -> c_5(d^#(d(x1)))} {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} ==> {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} We consider the following path(s): 1) { a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(d(x1)) -> c_0(d^#(b(x1))) , d^#(x1) -> c_2()} The usable rules for this path are the following: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(d(x1)) -> c_0(d^#(b(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , d^#(x1) -> c_2()} Details: We apply the weight gap principle, strictly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} and weakly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(x1) -> c_1(b^#(b(b(x1))))} and weakly orienting the rules { a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(x1) -> c_1(b^#(b(b(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d^#(x1) -> c_2()} and weakly orienting the rules { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d^#(x1) -> c_2()} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [3] d^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [7] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(d(x1)) -> c_0(d^#(b(x1)))} and weakly orienting the rules { d^#(x1) -> c_2() , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(d(x1)) -> c_0(d^#(b(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(x1) -> x1} and weakly orienting the rules { a^#(d(x1)) -> c_0(d^#(b(x1))) , d^#(x1) -> c_2() , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(x1) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [7] d(x1) = [1] x1 + [2] b(x1) = [1] x1 + [2] c(x1) = [1] x1 + [4] a^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [4] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(c(x1)) -> c(d(d(x1)))} and weakly orienting the rules { d(x1) -> x1 , a^#(d(x1)) -> c_0(d^#(b(x1))) , d^#(x1) -> c_2() , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(c(x1)) -> c(d(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [6] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [2] c(x1) = [1] x1 + [1] a^#(x1) = [1] x1 + [7] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [2] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , a^#(d(x1)) -> c_0(d^#(b(x1))) , d^#(x1) -> c_2() , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , a^#(d(x1)) -> c_0(d^#(b(x1))) , d^#(x1) -> c_2() , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { d_0(4) -> 16 , d_0(4) -> 17 , d_0(4) -> 18 , d_0(4) -> 19 , d_0(16) -> 17 , d_0(16) -> 18 , d_0(16) -> 19 , d_0(17) -> 18 , d_0(17) -> 19 , d_0(18) -> 19 , b_0(4) -> 12 , b_0(12) -> 11 , b_0(15) -> 14 , c_0(4) -> 4 , c_0(4) -> 16 , c_0(4) -> 17 , c_0(4) -> 18 , c_0(4) -> 19 , c_0(16) -> 15 , c_0(17) -> 12 , c_0(18) -> 14 , c_0(19) -> 11 , a^#_0(4) -> 5 , d^#_0(4) -> 7 , c_1_0(10) -> 5 , b^#_0(4) -> 9 , b^#_0(11) -> 10 , b^#_0(14) -> 13 , c_2_0() -> 7 , c_6_0(13) -> 5} 2) { a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , b^#(c(x1)) -> c_5(d^#(d(x1))) , d^#(x1) -> c_2()} The usable rules for this path are the following: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , b^#(c(x1)) -> c_5(d^#(d(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , d^#(x1) -> c_2()} Details: We apply the weight gap principle, strictly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} and weakly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(c(x1)) -> c_5(d^#(d(x1)))} and weakly orienting the rules { b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(c(x1)) -> c_5(d^#(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d^#(x1) -> c_2()} and weakly orienting the rules { b^#(c(x1)) -> c_5(d^#(d(x1))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d^#(x1) -> c_2()} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [8] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(x1) -> x1} and weakly orienting the rules { d^#(x1) -> c_2() , b^#(c(x1)) -> c_5(d^#(d(x1))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(x1) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [12] d(x1) = [1] x1 + [12] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [11] a^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [9] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(c(x1)) -> c(d(d(x1)))} and weakly orienting the rules { d(x1) -> x1 , d^#(x1) -> c_2() , b^#(c(x1)) -> c_5(d^#(d(x1))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(c(x1)) -> c(d(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [3] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [1] a^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [2] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [3] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [8] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , d^#(x1) -> c_2() , b^#(c(x1)) -> c_5(d^#(d(x1))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , d^#(x1) -> c_2() , b^#(c(x1)) -> c_5(d^#(d(x1))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { d_0(4) -> 11 , d_1(4) -> 18 , d_1(4) -> 19 , d_1(4) -> 20 , d_1(4) -> 23 , d_1(4) -> 25 , d_1(18) -> 19 , d_1(18) -> 20 , d_1(18) -> 23 , d_1(18) -> 25 , d_1(19) -> 20 , d_1(19) -> 23 , d_1(19) -> 25 , d_1(20) -> 23 , d_1(20) -> 25 , d_1(23) -> 25 , b_1(4) -> 14 , b_1(14) -> 13 , b_1(17) -> 16 , c_0(4) -> 4 , c_0(4) -> 11 , c_0(4) -> 18 , c_0(4) -> 19 , c_0(4) -> 20 , c_0(4) -> 23 , c_0(4) -> 25 , c_1(18) -> 17 , c_1(19) -> 14 , c_1(20) -> 16 , c_1(23) -> 13 , a^#_0(4) -> 5 , d^#_0(4) -> 7 , d^#_0(11) -> 10 , d^#_1(20) -> 21 , d^#_1(23) -> 22 , d^#_1(25) -> 24 , c_1_1(12) -> 5 , b^#_0(4) -> 9 , b^#_1(13) -> 12 , b^#_1(16) -> 15 , c_2_0() -> 7 , c_2_0() -> 10 , c_2_1() -> 21 , c_2_1() -> 22 , c_2_1() -> 24 , c_5_0(10) -> 9 , c_5_1(21) -> 9 , c_5_1(22) -> 15 , c_5_1(24) -> 12 , c_6_1(15) -> 5} 3) { a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , b^#(c(x1)) -> c_5(d^#(d(x1)))} The usable rules for this path are the following: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , b^#(c(x1)) -> c_5(d^#(d(x1)))} Details: We apply the weight gap principle, strictly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} and weakly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [4] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [2] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [7] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b^#(c(x1)) -> c_5(d^#(d(x1)))} and weakly orienting the rules { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b^#(c(x1)) -> c_5(d^#(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [7] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(x1) -> x1} and weakly orienting the rules { b^#(c(x1)) -> c_5(d^#(d(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(x1) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [8] d(x1) = [1] x1 + [4] b(x1) = [1] x1 + [1] c(x1) = [1] x1 + [8] a^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(c(x1)) -> c(d(d(x1)))} and weakly orienting the rules { d(x1) -> x1 , b^#(c(x1)) -> c_5(d^#(d(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(c(x1)) -> c(d(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [10] d(x1) = [1] x1 + [1] b(x1) = [1] x1 + [3] c(x1) = [1] x1 + [13] a^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [3] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [4] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , b^#(c(x1)) -> c_5(d^#(d(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , b^#(c(x1)) -> c_5(d^#(d(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { d_0(4) -> 11 , d_0(4) -> 18 , d_0(4) -> 19 , d_0(4) -> 21 , d_0(4) -> 23 , d_0(11) -> 18 , d_0(11) -> 19 , d_0(11) -> 21 , d_0(11) -> 23 , d_0(18) -> 19 , d_0(18) -> 21 , d_0(18) -> 23 , d_0(19) -> 21 , d_0(19) -> 23 , d_0(21) -> 23 , b_0(4) -> 14 , b_0(14) -> 13 , b_0(17) -> 16 , c_0(4) -> 4 , c_0(4) -> 11 , c_0(4) -> 18 , c_0(4) -> 19 , c_0(4) -> 21 , c_0(4) -> 23 , c_0(11) -> 17 , c_0(18) -> 14 , c_0(19) -> 16 , c_0(21) -> 13 , a^#_0(4) -> 5 , d^#_0(4) -> 7 , d^#_0(11) -> 10 , d^#_0(21) -> 20 , d^#_0(23) -> 22 , c_1_0(12) -> 5 , b^#_0(4) -> 9 , b^#_0(13) -> 12 , b^#_0(16) -> 15 , c_5_0(10) -> 9 , c_5_0(20) -> 15 , c_5_0(22) -> 12 , c_6_0(15) -> 5} 4) { a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(d(x1)) -> c_0(d^#(b(x1)))} The usable rules for this path are the following: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(d(x1)) -> c_0(d^#(b(x1)))} Details: We apply the weight gap principle, strictly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} and weakly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [7] d^#(x1) = [1] x1 + [2] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a^#(d(x1)) -> c_0(d^#(b(x1)))} and weakly orienting the rules { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a^#(d(x1)) -> c_0(d^#(b(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [7] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(c(x1)) -> c(d(d(x1)))} and weakly orienting the rules { a^#(d(x1)) -> c_0(d^#(b(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(c(x1)) -> c(d(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [13] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [4] c(x1) = [1] x1 + [8] a^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [2] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [4] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(x1) -> x1} and weakly orienting the rules { b(c(x1)) -> c(d(d(x1))) , a^#(d(x1)) -> c_0(d^#(b(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(x1) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [13] d(x1) = [1] x1 + [2] b(x1) = [1] x1 + [4] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [14] c_0(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [2] b^#(x1) = [1] x1 + [2] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { d(x1) -> x1 , b(c(x1)) -> c(d(d(x1))) , a^#(d(x1)) -> c_0(d^#(b(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { d(x1) -> x1 , b(c(x1)) -> c(d(d(x1))) , a^#(d(x1)) -> c_0(d^#(b(x1))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { d_0(4) -> 16 , d_0(4) -> 17 , d_0(4) -> 18 , d_0(4) -> 19 , d_0(16) -> 17 , d_0(16) -> 18 , d_0(16) -> 19 , d_0(17) -> 18 , d_0(17) -> 19 , d_0(18) -> 19 , b_0(4) -> 12 , b_0(12) -> 11 , b_0(15) -> 14 , c_0(4) -> 4 , c_0(4) -> 16 , c_0(4) -> 17 , c_0(4) -> 18 , c_0(4) -> 19 , c_0(16) -> 15 , c_0(17) -> 12 , c_0(18) -> 14 , c_0(19) -> 11 , a^#_0(4) -> 5 , d^#_0(4) -> 7 , c_1_0(10) -> 5 , b^#_0(4) -> 9 , b^#_0(11) -> 10 , b^#_0(14) -> 13 , c_6_0(13) -> 5} 5) { a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} The usable rules for this path are the following: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} Details: We apply the weight gap principle, strictly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} and weakly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1)))))} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(x1) -> x1} and weakly orienting the rules { a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(x1) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [11] d(x1) = [1] x1 + [8] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [8] a^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(c(x1)) -> c(d(d(x1)))} and weakly orienting the rules { d(x1) -> x1 , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(c(x1)) -> c(d(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [12] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [4] c(x1) = [1] x1 + [4] a^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { d_0(4) -> 16 , d_0(4) -> 17 , d_0(4) -> 18 , d_0(4) -> 19 , d_0(16) -> 17 , d_0(16) -> 18 , d_0(16) -> 19 , d_0(17) -> 18 , d_0(17) -> 19 , d_0(18) -> 19 , b_0(4) -> 12 , b_0(12) -> 11 , b_0(15) -> 14 , c_0(4) -> 4 , c_0(4) -> 16 , c_0(4) -> 17 , c_0(4) -> 18 , c_0(4) -> 19 , c_0(16) -> 15 , c_0(17) -> 12 , c_0(18) -> 14 , c_0(19) -> 11 , a^#_0(4) -> 5 , c_1_0(10) -> 5 , b^#_0(4) -> 9 , b^#_0(11) -> 10 , b^#_0(14) -> 13 , c_6_0(13) -> 5} 6) { a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} The usable rules for this path are the following: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1))))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(x1) -> x1 , b(d(b(x1))) -> a(d(x1)) , b(c(x1)) -> c(d(d(x1))) , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , b^#(d(b(x1))) -> c_4(a^#(d(x1))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} Details: We apply the weight gap principle, strictly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} Details: Interpretation Functions: a(x1) = [1] x1 + [1] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [9] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d(x1) -> x1} and weakly orienting the rules { a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d(x1) -> x1} Details: Interpretation Functions: a(x1) = [1] x1 + [15] d(x1) = [1] x1 + [3] b(x1) = [1] x1 + [5] c(x1) = [1] x1 + [0] a^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] b^#(x1) = [1] x1 + [0] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {b(c(x1)) -> c(d(d(x1)))} and weakly orienting the rules { d(x1) -> x1 , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {b(c(x1)) -> c(d(d(x1)))} Details: Interpretation Functions: a(x1) = [1] x1 + [6] d(x1) = [1] x1 + [0] b(x1) = [1] x1 + [2] c(x1) = [1] x1 + [7] a^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] b^#(x1) = [1] x1 + [1] c_2() = [0] c_3() = [0] c_4(x1) = [1] x1 + [12] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { b(d(b(x1))) -> a(d(x1)) , b^#(d(b(x1))) -> c_4(a^#(d(x1)))} Weak Rules: { b(c(x1)) -> c(d(d(x1))) , d(x1) -> x1 , a(d(x1)) -> d(b(x1)) , a(x1) -> b(b(b(x1))) , a(x1) -> x1 , a(c(x1)) -> b(b(c(d(x1)))) , a^#(x1) -> c_1(b^#(b(b(x1)))) , a^#(c(x1)) -> c_6(b^#(b(c(d(x1))))) , a^#(x1) -> c_3()} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { d_0(4) -> 16 , d_0(4) -> 17 , d_0(4) -> 18 , d_0(4) -> 19 , d_0(16) -> 17 , d_0(16) -> 18 , d_0(16) -> 19 , d_0(17) -> 18 , d_0(17) -> 19 , d_0(18) -> 19 , b_0(4) -> 12 , b_0(12) -> 11 , b_0(15) -> 14 , c_0(4) -> 4 , c_0(4) -> 16 , c_0(4) -> 17 , c_0(4) -> 18 , c_0(4) -> 19 , c_0(16) -> 15 , c_0(17) -> 12 , c_0(18) -> 14 , c_0(19) -> 11 , a^#_0(4) -> 5 , c_1_0(10) -> 5 , b^#_0(4) -> 9 , b^#_0(11) -> 10 , b^#_0(14) -> 13 , c_3_0() -> 5 , c_6_0(13) -> 5}